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Abstract 

The real options literature has provided new insights on how to manage irreversible capital 

investments whose payoffs are always uncertain. Two of the most important predictions from such 

theory are: (i) greater risk delays a firm�s investment timing, and (ii) greater risk increases the option 

value of waiting. This paper challenges such conclusions in a setting in which the relevant random 

variable is the arrival time of an unfavorable event. In addition, we avoid using stochastic calculus by 

introducing a novel framework in which a firm updates its beliefs about the profitability of an 

investment opportunity by waiting to invest. 
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INTRODUCTION 

The real world is full of situations in which the main source of uncertainty regarding the 

value of an investment opportunity stems from the arrival date of a crucial event. For 

instance, let us consider in the first place a firm that has to choose the timing of investment 

in an R&D project whose outcome can be patented. In winner-takes-all industries, the time 

until discovery of the product or technology is clearly one of the most critical factors to take 

into account because of competitive forces. Yet, the time-to-discovery is usually unknown 

ex ante, so it is reasonable to assume that the relevant randomness of such R&D project 

largely stems from the uncertain discovery date, as well as those of competitors.1 

In the second place, suppose that a firm has to make a decision about when to build 

a factory subject to a probable change in environmental or tax policy. As discussed by Dixit 

and Pindyck (1994, p. 304), the date of policy change can be considered to be unknown to 

the firm and �it is commonly believed that expectations of shifts of policy can have 

powerful effects on decisions to invest.� 

In the last place, consider product launching decisions. In particular, let us suppose 

that a firm has to decide when to introduce a recently developed product under conditions 

of uncertainty about the future date at which a substitute product may be launched. 

Competition of this product may entail the gradual decline in the demand of the product 

sold by the firm, and, consequently, randomness about the maturity date of the market 

would be an aspect that would critically affect the firm�s launching decision.2 

The real options literature has certainly been aware of the importance of these 

situations in which the date of occurrence of a key event is uncertain. Indeed, this explains 

                                                        
1 See Weeds (2002) for a formalization of such situation in a game-theoretic real options setting. 

2 This example is drawn from Bollen (1999). 
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the use of Poisson processes in real option valuation. Yet, while Poisson arrivals seem the 

correct way to model such phenomena, this modeling approach is not particularly suited to 

perform many analyses beyond real option pricing. For example, the effects of mean-

preserving spreads on investment timing and option values cannot be determined. For this 

reason, the purpose of this paper is to reexamine some of the conclusions of the theory of 

real options in a fairly general setting in which all uncertainty refers to the arrival date of an 

unfavorable event that critically affects a firm�s payoff.3 To this end, we introduce a novel 

framework that is based on Bayesian updating: by simply waiting to invest, the firm can 

update its beliefs about the profitability of an investment opportunity. Moreover, our setup 

requires no stochastic calculus, which significantly reduces the difficulty of the model. 

Furthermore, the firm�s problem is amenable to an intuitive analysis in terms of marginality 

conditions linked to Bernanke�s (1983) �bad news principle of irreversible investment.� 

The consideration of uncertain-date events yields that some of the fundamental 

results of the real options approach are not clear-cut. Firstly, the canonical real options 

model predicts that the value of an investment opportunity is non-decreasing in the variance 

parameter of the Geometric Brownian Motion that governs the return of the underlying 

asset.4 Greater uncertainty cannot be harmful because the company always has the option to 

wait for better times or even not to invest should conditions turn out to be adverse. But, at 

the same time, the firm can capitalize on favorable market evolution and invest right on. 

Therefore, there exists an asymmetry in that waiting to invest shields the firm against 

adverse realizations of uncertainty, but does not prevent it from taking advantage of 

                                                        
3 The date of occurrence of such event can be viewed to originate from a non-homogeneous Poisson process 

with a time-dependent arrival rate in which only the first event that occurs matters. 

4 See, e.g., the classic paper by McDonald and Siegel (1986). 
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favorable ones. This asymmetry, always present when there exist options whose payoffs are 

convex in the realization of the random variable, accounts for the non-negative effects of 

greater uncertainty on the value of investment opportunities. Notwithstanding, one of the 

contributions of our paper is to show that such asymmetry is not present when there exists 

uncertainty about the arrival date of an unfavorable event. In principle, in our setup, the 

event may occur before or after investing, but we show that the firm finds it optimal to 

undertake the investment only if uncertainty has not been resolved. Given this result and 

that the space of outcomes coincides with that of the control variable (namely, time), it 

follows that the firm would be insured against bad realizations because of waiting, and 

would take advantage of (very) good ones. However, it would be damaged by realizations 

shortly after the optimal time of investment. That is, if the event occurred right after 

investing, then the project may turn out to be unprofitable ex post, even though it might 

have seemed an excellent investment in expectation. As a result, more uncertainty may 

destroy option values, depending on whether the probability of occurrence of the event after 

the date of investment is increased by a sufficiently large amount. 

Secondly, real options theory usually predicts that increased risk delays investment 

timing, a relevant aspect for both public policy and business purposes. Such conclusion 

basically follows from Bernanke�s (1983) bad news principle. Intuitively, the benefit of 

waiting arises from the avoidance of making a poor investment when news is bad (i.e., 

when events are unfavorable). Given that only adverse events matter and a mean-preserving 

spread increases their probability of occurrence, the marginal benefit of delaying investment 

increases with uncertainty. Since the marginal opportunity cost of waiting (namely, current 

profits forgone) is unaffected by the spread, the net marginal benefit of deferring investment 

increases with uncertainty, which in turn induces a delay in entry. We show that this need 
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not be true in our setting. More specifically, in our model only adverse events matter too. 

Yet, the firm endogenously chooses whether to position itself in a situation in which a 

mean-preserving spread increases or decreases the conditional probability of immediate 

occurrence of the (bad) event, which explains why the conclusions may differ. 

It is widely believed that real options theory predicts that greater risk depresses 

investment, and at the same time increases the value of an investment opportunity. These 

results can already be found in McDonald and Siegel (1986, p. 714). Indeed, the prediction 

that more uncertainty leads to less investment appears to be supported by empirical 

evidence, as shown by Ferderer (1993) using aggregate data, or Leahy and Whited (1996) 

and Guiso and Parigi (1999) using micro data. These two last studies suggest that real 

options theory is the most solid theory of investment under uncertainty, which reinforces 

the need for a more comprehensive framework that helps to determine the factors and 

conditions that drive theoretical conclusions. Our work tries to be a step in this direction. 

The paper is organized as follows. Section 2 introduces the model and Section 3 

solves it. Section 4 identifies a necessary and sufficient condition for an increase in risk to 

speed up investment, while Section 5 provides a necessary and sufficient condition for the 

value of an investment opportunity to be a non-decreasing function of risk. Section 6 

concludes. A mathematical appendix with all proofs is included at the end of the paper. 

 

2. FOUNDATIONS OF THE THEORETICAL MODEL 

Let time, denoted by t, be a continuous variable, i.e. ).,0[ t  Suppose that a risk-neutral 

firm �probably a monopolist� has to decide the instant at which it wants to enter a market 

by launching a product for which there already exist some potential buyers. Such decision is 

complicated by the existence of uncertainty about the temporal evolution of the market, 
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which in turn affects the pattern of profit evolution. Uncertainty unravels partially over 

time, implying that the market (and, as a result, profit) evolves in the following manner. In a 

first stage, the profit flow, which is positive at date ,0t  grows over time. However, the 

market reaches its ephemeral maturity at an instant of time, where   is a continuous 

random variable with density )(f  defined on ).,0[   (We will slightly abuse the notation 

and   will also denote its realization.) Hence, in a second phase whose beginning is 

unknown at date 0, instantaneous profit decreases over time and converges to 0 as t , 

perhaps because consumers perceive that there is another product that can better serve their 

needs and choose to switch gradually. Formally, we assume the following: 

Assumption 1: Given a realization   of the random maturity date, the flow of profits made 

by the firm if active in the market evolves continuously over time as follows: 

 












tt
tt

t
 if       )2(exp

0 if                 )exp(
),(  

0  denotes the profit the firm would make at date ,0t  while 0 denotes the growth 

rate of the profit flow (if the market is in expansion; otherwise, it is its decay rate).5 

Assumption 2: The maturity date of the market is a random variable with continuous 

density function )(f  with support ).,0[   

In order to set up a real options framework, we require investment to be irreversible: 

                                                        
5 It is straightforward to introduce different rates of growth and decay, or even more general functions for the 

growth and decline stages, but we choose not to do so to keep the model simple. Note also that we are 

implicitly assuming that operating costs are small enough, in order to avoid making exit an issue and focus 

only on entry timing. However, zero cost is not necessary for positive profits. For example, a sufficiently low 

marginal cost in a standard Hotelling model with a single firm located at one extreme would suffice, since 

costs would always be transferred to consumers, who in turn would be willing to pay a high price. 
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Assumption 3: The firm bears an entirely sunk cost of entry 0K  and discounts future 

payoffs at a constant risk-free interest rate .0r  

Finally, we bound the value of the firm�s investment opportunity by assuming that 

the expected discounted value of one dollar that is capitalized at an instantaneous rate of  

is finite no matter what the length of the ascending phase of the life cycle is:6 

Assumption 4: .)(
0

)( 


  dfe r  

 

3. RESOLUTION OF THE MODEL 

The firm�s objective at time 0t  is to choose an entry rule that maximizes the expected 

discounted stream of cash flows conditional upon information available at the time of entry. 

We proceed now to characterize such optimal entry rule for the two possible states of the 

system, depending on whether the maturity date of the market has been revealed or not. 

In the first place, it is clear that it is not optimal for the firm to exit at some date 

after having invested, given our assumptions of no scrap value and positive profit flow at 

any possible situation. This holds no matter if   is known or not. In turn, Lemma 1 below 

describes the firm�s behavior once the maturity of the market has been reached. According 

to this result, the firm prefers to invest immediately once   is revealed, but only if such 

date is sufficiently large; otherwise, it prefers not to invest: 

                                                        
6 In the traditional real options framework, a parallel convergence condition requires the rate of expected 

growth of the investment to be smaller than the risk-free rate. 
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Lemma 1: Immediate investment at the revealed maturity date   is optimal 

,
)(

log
1

,0maxmax















 






 rKt  whereas investment during the declining phase of 

the market is not profitable .maxt  

Hence, to characterize the optimal entry rule fully, it only remains to focus on the 

time 1t  at which the firm would enter the market if   had not been revealed yet, and thus 

the profit cycle were in its ascending phase. Using Lemma 1, the value of the firm�s 

investment opportunity at date 0t  as a function of its entry time 01 t  is: 

  

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
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
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

 

If the firm chooses to wait until ,1t  then, for realizations of   smaller than ,1t  it seizes the 

payoff to immediate investment at   if and only if it is positive. In contrast, if the firm ends 

up entering at 1t  while the profit cycle is growing, then its expects to gain a certain payoff 

that is contingent on the information gathered by the firm until time 1t  (namely, that  must 

be greater than ).1t  By another application of the lemma, )( 1tV  can be rewritten as follows: 





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
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
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)( 1tV  can be easily shown to be continuously differentiable. Therefore, unlike 

conventional real options analysis, in which expected payoff functions depend on Ito 
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processes and thereby are not differentiable in the classical sense, the firm�s optimization 

program can be solved using standard differentiation techniques:7 

0)( s.t.

)(max

1

1
01




tV

tV
t  

Before examining the firm�s optimal decision rule when the market is growing, let 

us introduce some notation. In particular, let 






t

df

tft



)(

)(
)(  denote the hazard rate, that is, 

the probability of the market immediately reaching its maturity at date t  given that this 

event has not occurred previously. To ensure that )( 1tV  is single-peaked, we also assume 

that the environment is such that 
)(

)(
2

'

tf
tfr   for all 0,t   which automatically holds if 

the density is decreasing.8 We can now characterize the firm�s optimal investment rule: 

                                                        
7 It is worth remarking that the optimal entry time to be derived will not change as time goes by and no event 

occurs. In particular, let )( 1 ttV  be the value of the firm if it chooses to invest at 1t  (conditional on the market 

still expanding), given its current information at .0t  Note that, conditional upon the cycle still growing at ,t  

we have that ),Pr(/)0()( 11  tetVttV rt  so the set of maximizers of )( 1 ttV  coincides with that of 

),0( 1tV  and there is no loss of generality in letting .0t  Intuitively, at date 0 the firm already takes into 

account the underlying Bayesian updating process of which it can benefit just by delaying investment. As a 

result, it anticipates having better information at the time of entry if the market keeps on growing. 

8 A decreasing density is implied by a non-increasing hazard rate in the prior distribution over market size, 

which appears to be empirically supported in the light of the work by Barbarino and Jovanovic (2004). At a 

theoretical level, a decreasing hazard rate follows if the true hazard rate is constant but unknown to the firm, 

which can update its beliefs in a Bayesian fashion as time goes by (see, e.g, Choi 1991, footnote 9). Familiar 

probability distributions with non-increasing hazard rate and support ),0[   (other than the exponential) 
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Proposition 1: The firm�s optimal entry rule is �enter at }0)(:0min{ 11  tWtt e  if 

;et  else do not enter,� where .
)(

1
)(

)(
1

1
1 














tr

erKtW t







  

The following result allows for an economic interpretation of the firm�s optimal 

solution: 

Corollary 1: 0et satisfies ).)(( )()2(



e

eee

t

tsrstet dseeKtrKe    

In words: at an interior solution, the firm decides to enter at the instant of time such 

that the marginal value of waiting equals the marginal cost of delaying entry. The marginal 

cost is the profit flow forgone by waiting ,dt  ,dte et  while the marginal value is the part 

of sunk cost saved by delaying entry plus the marginal option value of waiting and avoiding 

an irreversible action. The latter value stems from the �bad news principle of irreversible 

investments,� which can be found in Bernanke (1983). According to this principle, the firm 

must only care about the bad news that may arrive in the next instant of time when deciding 

whether or not to undertake an irreversible project.9 Thus, the firm believes there is some 

positive probability that the market may suddenly start declining right after time et  (this is 

                                                                                                                                                                         
include the gamma, log-logistic, Weibull and F distributions for certain values of the parameters that define 

them. However, neither the density nor the hazard rate need to be non-increasing for the assumption to hold. 

For example, the density is decreasing even though the hazard rate is monotone increasing in Bass (1969) if 

.pq   Additional examples of common random variables with non-monotonic densities that may satisfy the 

requirement include the lognormal and the Gompertz (for certain parameter values), among several others. 

9 Irreversibility yields no advantages but implies some costs that arise because the firm cannot recoup its 

investment if conditions turn out to be adverse, which creates the asymmetry that the firm cares about adverse 

events (which would not be regrettable were investment reversible) but not favorable ones. 
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the bad news). Hence, waiting allows it to avoid making a negative payoff with probability 

.)( dtt e 10 Overall, total marginal value is equal to: 

).()( )()2(



e

ee

t

tsrste dseeKdttrKdt   

Note from the second term that waiting allows the firm to update its beliefs about the 

maturity date in a Bayesian fashion. By delaying entry, the firm benefits from learning what 

some events cannot be (via the denominator of the hazard rate; see its definition), thus 

allowing for a better assessment of the probabilities of still-not-occurred-events.11 At the 

same time, waiting implies that the firm faces a different ex ante probability of the market 

immediately reaching its maturity (via the numerator of the hazard rate). 

 

4. IMPACT OF GREATER UNCERTAINTY ON ENTRY TIMING 

One of the standard predictions of real options models is that higher uncertainty delays the 

optimal time of investment. There are some exceptions in certain contexts, though, as for 

example in Dixit and Pindyck (1994, pp. 370-372). 

We now show that the effect on investment timing of a greater spread is ambiguous 

when the payoff to the firm crucially depends on the unknown arrival time of an 

                                                        
10 By Lemma 1, the payoff if the firm invests at date t is negative if demand suddenly decays . maxtt   In 

particular, for maxtt e   (which always holds, as shown in the proof of Proposition 1). 

11 The reason being that conditioning reduces the outcome space, which enhances the firm�s information set. 

This contrasts with Roberts� and Weitzman�s (1981) model of staged investment, in which the value of a 

project is also unknown to the company but the firm can reduce uncertainty by going ahead in a sequential 

fashion. In our stylized model, unlike theirs, information gathering does not require an earlier investment. 

Rather, it requires waiting for information to arrive. 
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unfavorable event. In particular, we give a necessary and sufficient condition for a mean-

preserving increase in the spread (MPIS) to shorten the optimal time of entry whenever 

.0et  Since we are to compare members of a family of distribution functions based on 

(small) differences in the spread, with the restriction that their means be the same, we 

assume for the remainder of the paper that the density can be parameterized by 2 , i.e., 

).( 2f  2  is a parameter of increasing risk, so we will usually call it the variance of the 

random variable. As a result, the hazard rate is also a function of 2 , ),( 2 t  and, for 

convenience, we assume that it is differentiable in both arguments, denoting partial 

derivatives by subscripts. Lastly, notice that 
















)(
1

)(
),(

2
2





 

e
te

tr
erKtW e  

is a continuously differentiable function on the neighborhood of any pair ),( 2
00 et  such that 

.0),( 2
00 etW  Then we can establish the following: 

Proposition 2: Consider a family of distributions that can be parameterized by 2 , a 

parameter such that a rise in it represents an MPIS. Then increasing 2  hastens 

investment if and only if .0)( 2
002  et  

Let us assume for expositional purposes that )( f  is a continuously differentiable 

function ,   so that 0)( 2
002 


et  if and only .0)()()(

0

22

0

2
0

2
00

2
00  

et
ee dfttf    

Hence, an MPIS has two distinct effects on optimal investment timing. On the one hand, it 

has an impact on the unconditional probability of immediate decay after investing, 

).( 2
00 

etf  At an intuitive level, the firm tends to speed up entry if the MPIS decreases the 

(ex ante) probability of making losses immediately after investing. On the other hand, there 
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is an additional impact on the probability that the firm does not end up investing because of 

a low realization of , .)(
0

0

2
0

et

df   Intuitively, the firm is more inclined to hasten 

investment if the probability of a high realization that would allow it to enter increases. 

If 0)( 2
002 


et ,12 the marginal option value of waiting �that is, the cost of 

irreversibility� would be reduced due to the decrease of the weight put on the losses 

avoided by delaying entry. Such result is in stark contrast with the standard conclusion from 

the real options literature, according to which an MPIS uniformly increases risk at every 

point in time, which in turn increases the marginal value of delaying entry and thus delays 

investment. In our setup with a single random variable, an MPIS does not have this 

property,13 as exemplified by the following numerical example. In particular, let us assume 

                                                        
12 It is worth remarking that the restrictions that an MPIS imposes on the cumulative distribution function are 

consistent with .0)( 2
002 

et  A sketch of the proof is as follows. Let .)()(
0 0

2
02 

t s

dsdftH   Then an 

MPIS requires ,  0)( ttH   with .0)()0(  HH  Note that )(tH  is twice continuously differentiable if 

)( 2
02  f  is continuous, with 

t

dftH
0

2
0

' )()( 2   and ).()( 2
0

''
2  tftH   Since 0)( 2

02  t  if and 

only if ,0)()(
0

2
0

2
0 22  

t

dftf    it suffices to find a non-empty region in which )(tH  is both 

decreasing and convex. The properties that 0)()0(  HH  and ,0)( tH  together with the continuous 

differentiability of the function, yield such result for sufficiently large t, as can be readily seen graphically. 

13 A uniform increase in the hazard rate when augmenting 2  would delay the optimal entry time. Yet, this 

would call for something other than an MPIS. Namely, �a distributional upgrade,� as defined by Arozamena 

and Cantillon (2004), which is derived from a notion of first-order conditional stochastic dominance, rather 

than one of second order stochastic dominance. Therefore, not only risk would be affected when varying 2 . 
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that  follows a gamma distribution with parameters 0 and 0 : ~ Gamma(, ). 

Recall that 

 )(E  and ,)(

2
 Var  which means that we can perform an MPIS by 

simply multiplying both and  by any positive scalar smaller than 1. In addition, let the 

firm be a monopolist facing a linear demand with intercept 50a  and slope .1b  If costs 

are assumed to be zero, then it is well-known that .
4

50 2

  Finally, let 7000K  and 

.%5 r  Considering that the hazard rate of the gamma is non-increasing �and, hence, 

the density is decreasing� if ,1  we have the following results, summarized in Table 1: 

 
  E() Var() te 

0.8 0.4 2 5 0.58 

0.5 0.25 2 8 0.56 

0.1 0.05 2 40 0.2 

 
Table 1: Greater uncertainty speeds up entry 

 

5. IMPACT OF GREATER UNCERTAINTY ON OPTION VALUES 

Traditional real options theory predicts that an increase in uncertainty does not harm the 

value of a firm�s investment opportunity (see Dixit and Pindyck 1994, Chapters 5, 6, or 

Trigeorgis 1996, Chapters 4, 7, 11). We next study conditions under which this may not 

happen in our setting. More precisely, we perform a comparative static analysis of the 

impact of an MPIS on the value of the investment opportunity. 

First note that 0et  if and only if ,
)0(

))0()((

fr
frrKe






  since 

)0()(lim

)(lim

)(lim
)(lim
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0
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t t

t
t

t
t  






 
 . Given that the density function can be 
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parameterized by ,2  the threshold that optimally triggers immediate investment at date 0 

is also a function of :2  .
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As readily seen from this expression, comparative statics are slightly complicated, 

for the value of the investment opportunity is a piecewise differentiable function of  , and 

the non-differentiability point e  depends on .2  For this reason, we make a mild 

assumption that can be relaxed for some specific probability distributions that do not satisfy 

it. In particular, we assume from now on that )0( 2f  does not increase when performing 

an MPIS,14 which allows us to characterize some relevant properties of :)( 2 e  

Lemma 2: )( 2 e  is a continuous and non-decreasing function with range bounded by the 

interval ].)(,[ KrrK   

Lemma 2 states that )( 2 e  is non-decreasing in ,2  so an MPIS usually makes 

investment at 0t  more difficult as happens in traditional real options models. Yet, note 

that, as Proposition 2 shows, investment timing need not be delayed, because the firm may 

not wish to invest at 0t  even for a low variance. Let )( 2F  denote the cumulative 

                                                        
14 For example, the lognormal distribution satisfies such assumption, since .  0)0( 22  f  
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distribution function of , and let us impose the regularity condition that 

.0)(lim 2)(
2 

 


 Fe r 15 Then we can establish a necessary and sufficient condition 

for an MPIS not to reduce the value of the firm�s investment opportunity: 

Proposition 3: An MPIS does not reduce the value of the investment opportunity if and only 

if .)()())((2
0

2

0

2
0

0

2
0

2
0

))((2
00  




e

e

e

t

t

tre dfdFetr  
  

Intuitively, the usual asymmetry due to the fact that the firm can benefit from upside 

risk without being affected by downside risk is no longer present in this situation. The ex 

post value of the investment opportunity is not convex in the realization of the random 

variable unless .0et  Indeed, it is not a continuous function of , as illustrated by Figure 1. 

It is this fact that makes the results differ from conventional setups, noting that the envelope 

theorem implies that a change in et  due to the MPIS has a negligible effect on the firm�s 

maximal payoff. In particular, the outcome space coincides with that of t, which allows the 

discontinuity to appear. The firm does not invest when its worst-scenario payoff is 0 (the 

only way to prevent the discontinuity from arising), but rather when its expected payoff is 

maximal, that is, at .et  Yet, the firm faces risk of losses if the maturity of the market arrives 

shortly after investing (since maxtt e   if ),0et  as readily seen in Figure 1(a). It is this 

risk of losses that explains why increasing the spread may partially destroy option values. 

 
 
 
 
 
 
 

                                                        
15 For instance, this property is automatically satisfied if .r  
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        (a)Present paper framework             (b)Traditional framework 
 

     V                   V 

 

           te    tmax 

   goodness of the state      goodness of the state
        of the world             of the world 

 

       Figure 1: Ex post value of the investment opportunity 

 
As a result, the firm is insured against bad realizations because of waiting, and 

definitely takes advantage of good realizations, but is damaged by realizations sufficiently 

close to .0et  The overall effect of greater uncertainty is thus ambiguous. In particular, 

Proposition 3 shows that if an MPIS increases the probability that the firm does not invest 

(i.e., ),0)(
0

2

0

2
0 

et

df   then the value of the investment opportunity does not decrease 

(since the left hand side of the expression in Proposition 3 is always non-positive,16 while 

the right hand side would be positive). The point is that the firm would lose nothing if 

et0  and would take advantage of a smaller probability of decay on dates following its 

entry. Matters may be different, though, if the probability that the firm invests increases 

when the spread is augmented, since 
et

df
0

2

0

2
0 )(   could be negative and very small 

indeed. In such a case, the probability of the market maturity date occurring at some date 

between et0  and maxt  (and thus the probability of making losses) may increase so much so 

as to destroy part of the value of the option to invest. 

                                                        
16 See Tirole (1988, p. 397, exercise 10.6) or Mas-Colell, Whinston and Green (1995, p. 198, expressions 

6.D.1 and 6.D.2). 
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Continuing with the example of Section 4, we next provide a numerical illustration 

that greater uncertainty harms option values. Since a gamma distribution has )0( 2f  

2   if and only if its hazard rate is decreasing, we have the results depicted in Table 2. 

 

  E() Var() V 

0.8 0.4 2 5 560 

0.5 0.25 2 8 627 

0.1 0.05 2 40 598 

 

Table 2: Greater uncertainty harms option values 

 

6. CONCLUSION 

This paper has focused on investment contexts in which the only source of uncertainty 

affecting the value of a project stems from the unknown date of arrival of an unfavorable 

event. We have not modeled uncertainty over time by the means of a full-fledged stochastic 

process, and we have assumed under fairly general conditions that the date of occurrence of 

the event is a single random variable. In particular, it need not be exponentially distributed, 

which would rule out Poisson processes, since they are not well suited for certain analyses. 

The consideration of unknown-date events as a source of uncertainty dramatically 

affects some of the core conclusions that characterize conventional real options theory. 

More specifically, we have identified a necessary and sufficient condition for the value of 

an investment opportunity to decrease with uncertainty. This would occur because the time 

space �which is the control space� and the outcome space �which is the state space� 

coincide. Consequently, waiting allows the firm to be insured against adverse states of the 

world while taking advantage of favorable states. The firm cannot avoid being damaged 
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(and thus making losses) if the adverse event occurs shortly after investing, though. The 

reason is that the firm chooses to invest when expected net present value is maximal, not 

when downside risk vanishes, and thus greater uncertainty may increase the probability of 

occurrence of the adverse event right after investing by a sufficiently large amount. 

In addition, we have shown that greater uncertainty may speed up entry timing in 

certain situations. Pinpointing the conditions under which this occurs is certainly relevant 

for empirical work on the investment-uncertainty relationship. In our model, the firm 

anticipates that it will have better information at the time of investment, so at the margin, it 

only cares about the conditional probability of immediate arrival of the unfavorable event. 

Greater uncertainty may reduce this probability of receiving bad news, thus decreasing the 

cost of making an irreversible investment, which would hasten entry. Intuitively, the firm 

would face a smaller (ex ante) probability of making losses immediately after investing 

and/or a larger probability of being able to invest because of favorable market conditions. 

Lastly, we have set up an alternative theoretical framework for continuous-time real 

options models of investment whenever the demand of a product follows a life cycle that is 

unknown to the firm.17 The setting is simpler than that proposed by Bollen (1999), and is a 

potentially useful building block for issues that we do not deal with, such as the option to 

add or contract capacity,18 R&D investment opportunities that open up the option to enter 

new markets that are expected to evolve as the one described, or game-theoretic setups. 

                                                        
17 Such a model may be relevant based on empirical evidence. Thus, Bowman and Moskowitz (2001, p. 775) 

suggest that one of the mistakes made by Merck when valuing its Project Gamma was the use of the Black-

Scholes formula, instead of taking into account that some biotechnology products follow a life cycle. 

18 In particular, Bollen (1999) examines these situations numerically. He shows that traditional real options 

models tend to overvalue (undervalue) the option to expand (respectively, contract) a project. 
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APPENDIX 

Proof of Lemma 1: Since rt

t

sr KedseetNPV 



   )(2)(   is strictly quasi-convex on 

),,(  19 it follows that, for all ,''' tt   )).(),(max()( ''' tNPVNPVtNPV   Taking 

the limit as ,'' t  ).0),(max()( ' NPVtNPV   Finally, note that 
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Differentiating with respect to 1t  and performing some algebraic manipulations yields:  
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1 tt   Otherwise, we would reach a contradiction: 
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 for .max
1 tt   Assumption 4 implies that )( 1tV  is bounded above, 

which shows that )( 1tV  attains a unique global maximum when ,0max t  so let 0max t  
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and note that, to conclude the proof, we can restrict our attention to the set ].,0[ maxt  In this 

case, )( 1tV  is as follows: 
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By Assumption 4, this function is bounded above. Differentiating it with respect to ,1t  

solving the integrals, taking into account that 
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20 If r , we should derive the functional form of )( 1tV  from scratch, as directly plugging in r implies 

that )( 1tV  is not well defined. Yet, some calculations show that the same expression obtains for computing te. 
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It is also clear that ,0)( etV  since ,0)(lim 11
 tVt  and )( 1tV  is single-peaked. Finally, 

simple manipulations show that maxtt e   if ,0et  so the firm does not enter if the maturity 

date of the market turns out to be smaller than et  (by Lemma 1).■ 

Proof of Corollary 1: For ,0et  the following holds: .0)( etW  So straightforward 
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Proof of Proposition 2: Differentiate ),( 2etW  with respect to et  and 2  and rearrange 
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Proof of Lemma 2: First note that )( 2 e  is a well-defined function (and not a 

correspondence) by the uniqueness of et  for a given .2  Indeed, it is continuous by the 

continuity of .  )( 22  f  Furthermore, if an MPIS is performed so that the variance 
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thus )( 2 e  is non-decreasing. Finally, note that )0( 2f  can be neither smaller than 0 
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nor larger than ,  which, together with non-decreasingness of ),( 2 e  implies that the 

range of the function must be bounded by ].)(,[ KrrK  ■ 

Proof of Proposition 3: We proceed to prove the statement of the proposition for three 

different cases: 

(i) If ),(lim 2
2  

e
  then the firm�s optimal time of entry is ,  0)( 22  et 21 so: 

. )(
11

)(
0

2)(2
0 






 















 



 K
r

dfe
rr

V r







   

Hence, differentiating yields: 

 )(
11)(

)(
0

2)(
2

2
02

0
'

2














 










 dfe
rrd

dV
V r  

Integrating by parts, considering that 0)(
0

2
2 



 df o  and 


 
0

2
0

2
0 )()( 22 dssfF  

when an MPIS is performed, and noticing that 




0

2)( )(2 
 Fe r  is well-defined we 

have: 



 
























































0

2)(

0 0

2)(

00

2)(2
0

'

)(
2

            

)()()(
11

)(

2

22























dFe
r

dsdsferdssfe
rr

V

r

rr

 

Hence, taking into account that 0)( 0
2
0  ee tt   and thus :0)(

0

2

0

2
0 

et

df   

                                                        
21 This follows from the facts that 22   )(   e  if and only if the firm invests immediately for all 2 . 



 24

.)()())((2 

0)(0)(

0

2

0

2
0

2

0

2
0

2
0

))((2
00

0

2
0

)(2
0

'
















e

e

e

t

t

tre

r

dfdFet

dFeV











 

This completes the proof when ).(lim 2
2  

e
  

(ii) If ),(lim 2
02  

e
  then we have that 2

0
2
0   0)(  et  by Lemma 2, so: 



















 

















)(

2)(
)()(

)(

2)(2

2

2

2

2

)(             

)(
11

)(




















e

e
e

e

t

rt
tr

t

r

dfKe
r

e

dfe
rr

V

 

Given that 22   
)(

log
1

)(log
1 














 







 KrtrK e  (this trivially follows from 

Proposition 1), )( 2et  is a continuous function by the theorem of the maximum. 

Indeed, we have that )( 2et  is differentiable on a local neighborhood of 2
0  by the 

implicit function theorem, and hence the envelope theorem implies that effects of 2  

on )( 2V  via )( 2et  are of second-order, so letting ee tt 0
2
0 )(  , we have: 





































e

e
e

e t

rt
tr

t

r dfKe
r

edfe
rr

V
0

2
0

0

0

2 )( )(
11

)( 2
0

)(
2
0

)(2
0

' 











  

Integration by parts noting that 




0

2)( )(2 
 Fe r  is finite and recalling that 

0)(
0

2
02 



 df  and 


 
0

2
0

2
0 )()( 22 dssfF  when an MPIS is performed, yields: 



 25

.)(
2

)(

)(
2

)(

)()()(
11

)()(

0

2

0

2
0

0

0

2

0

2
0

000

0

2

0

2

0

2
0

0

2)(2
0

)(

2)(2
0

)()()(

0

2
0

)(

0

2
0

)(

2
0

)(
2
0

'





 

















































 



















 

















































 




ee

e
e

ee

e
eee

ee

e

e
e

t

r

t

rt
tr

t

r

t

rt
trtrtr

t

r

t

r

t

rt
tr

dFe
r

dfKe
r

e

dFe
r

dfKe
r

e
r

e
r

e

ddssferdssfe
rr

dfKe
r

eV


























































 

Hence, we have that 













































e

e

e

ee

e

e

e

e

t

t

tre

tt

tre

t
e

tr

t

r

dfdFetr

dfdFetr

df
trr

edFe
r

V

0

2

0

2
0

0

2

0

2
0

0

2

0

0

2

0

2
0

2
0

))((2
00

2
0

2
0

))((2
00

2
02

00

)(
2
0

)(2
0

'

)()())((2                  

)()())((2                  

)(
))()((

)(
2

 0)(

























 

where first we have used the first-order condition of the optimization program and 

finally we have used the fact that 0)(
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)( 2 e  is continuous and non-decreasing by Lemma 2, then )(  must be convex 

(perhaps a singleton), so the following facts clearly hold: (1) case (i) applies 

);(inf 2    (2) case (ii) applies );(inf 2    and (3) 0)( 2
0 et  as 

),( 2 e  so )( 2et  is a continuous function (since )( 2 e  is continuous). This 

shows that, although )( 2V  need not be differentiable at ),(inf   it is clearly 

continuous and non-decreasing under the condition stated in the proposition.■ 
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